~

AD-A216 460

" . v
‘T}? Pl CZ}E?’

UNCLASSIFIED
SECURITY CLASSITICATION OF THIS PAGE (When Deta Entered
READ INSTRUCTION:
REPORT DOCUMENTATION PAGE BETORE oM 1L e rORer
1. REPOR1 WUMBiR 2. 60VT ACCESSIOM MO. [3. RECIPIENT'S CATALDG Num:i:R
4. TIVLE (and Subtitie) 5. TYPE Of REPORT § PERIOD COVERLD
Ada Compiler Validation Summary Report: Alsys, 14 March 89 - 1 Dec 90

AlsvCOMP 005, Version 4.3, SUN 3/260 (host & target),

e 6. PERFORMING DRG. REPORT WUMB: K
890314A: 0037 :

7. AUTHOR(s) t. CONTRALT OR GRANT NUMEER(s)
ATNOR, Paris, France.

§. PERFORMING ORGAN:IZATION AND ADODRESS 10. PROGRAM [LEMINT PR

~
3%

“enc A ¢ e

- . -

877, TASk

AFNOR, Paris, France,

11. CONTRO.LING OFFICE NAM: AND ADDRESS 12. REPDR! DATE

Ada ngnt Program Office £ Def

United States Department o efense | DRERE 0Lt a7 Y
washington, DC 20301-3081 ‘ o
14. MONITORING AG:NCY NAMI & ADDRESS(If different from Cont:cimy vice; 1eosET TN C LT L oA,

UNCLASSIFIED

TNOR, Paris, F) . 8SSIFICATION,DOWNGRACING
AFNOR, Paris, France 158 gégtofm ICATION/DOWNGRAZIN

16. DISTRIBUTION STATEMEN (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBLTION STRTEMIN (of the abstract entered in Block 20 M gifferent from Report)

UNCLASSIFIED

18. SUPF_EMINTARY NOTES

16. KEYWORDS (Continue onreverse side if necessary and dent:ify by block aumber)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRALT (Continue onreverse si0e 1f necessary and dentify by block numbder)

Alsys, AlsyCOMP 005, Version 4.3, AFNOR, France, SUN 3/260 under Sun O0S release 3.2,

90 01 95 012

WUmDeY :

Ada COMPILEL
VALIDATION SUMMARY REPORT:
Certificate Number: 890314A1.10037
Alsys
AlsyCOMP_005, Version 4.3
SUN 3/260

Completion of On~Site Testing:
14 March 1989

Prepared By:
AFNOR
Tour Europe
Cedex 7
F-92080 Paris la Deéfense

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

AVF-VSE-AFNOR-65-02

L
TEON
["e2 5\
\§ 2
S s
Accesion For
NTIS CRaXLI
DTIC Tag 0
Uianrooneng L
Justticatin
BY
Distaabitice o
I —
Avanalrity Codes
et TR —
. AL o or
Dist Spedidl
A-| }

Ada Compiler Validation Summary Report:

Compiler Name: AlsyCOMP_005, Version 4.3

Certificate Number: 890314A1.10037

Host: SUN 3/260 under Sun OS release 3.2

Target: SUN 3/260 under Sun OS release 3.2
Testing Completed 14 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Fole Labares

AFNOR

Fabrice Garnier de Labareyre
Tour Europe

Cedex 7

F-92080 Paris la Défense

AN g
/s P e
¢ 7 e

‘Ada Validation Organization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA 22311

L K. 0

Ada Joint Program Office
Dr. John Solomond
Director

Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1

1.1 PU
1.2 UGS
1.3 RE
1.4 DE?
1.5 AC

CHAPTER 2

.1 co
2.2 I¥

CHAPTER 3
. TE
SuU

SU
WI

AD
1 Pr
.2 Te
3 Te

.

W W wwwwwww
. P T S S
LS IS N IS e RS R = N S

ARPPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

INTRODUCTION

RPOSE OF THIS VALIDATION SUMMARY REPORT
E OF THIS VALIDATION SUMMARY REPORT .
FEREUC”S .

FTINITION OF TERMS

VC TEST CLASSES

CONFIGURATION INFORMATION
NFIGURATION TESTED.
PLEMENTATION CHARACTERISTICS.

TEST INFORMATION

ST RESULTS. . . . e
MMARY OF TEST RESUL"S BY CLASS

MMARY OF TEST RESULTS BY CHAPTER.
THDRAWN T”STS e e e e

INARPPLICABLZ TESTS. .
TEST, PROCESSING, AND EVALUATION MODIFICATIONS

DITIONAL TESTING INFORMATION.
evalidation

st Method

St S1te i i i i e e e e e e e

DECLARATION OF CONFORMANCE

TEST PARAMETERS

WITHDRAWN TESTS

APPENDIX F OF THE Ada STANDARD

-

.

« e e .
0 -~ U U

10
11

16
16
17
17
17
21
23
23
23

24

INTRODUCTION

CHAPTER 1

INTRODUCTION

e
4 -

This Validation Summary Report “t¥SR) describes the extent to which a
specific Ada compiier conforms to the Ada Standard, ANSI/MIL-STD-1815A. This
report explains a.ll technical terms used within 1t and thoroughly reports
the results of testing this compiler wusing the Ada Compiler Validation
Capability,(ACVE) - An Ada compiler must be implemented according to the Ada
Standard, and any implementation-dependent features must conform to the
requirements of the Ada Standard. The Ada Standard must be implemented 1in
1ts entirety, and nothing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, 1t must
be understood that some differences do exist between implementations. The
Ada Standard permits some implementation dependencies--for example, the
maximulk length of i1dentifiers or the maximum values of integer types. Other
differences .between compilers result from the characteristics of particular
operating systems, hardware, or impiementation strategies. All the
dependencies observed during the process of testing this compiler are given
in this report.

The information 1in this report 1s derived from the test results produced
during validation testing. The validation process 1includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the resulits. The purpose of validating is to ensure conformity of
the compiler to the Ada Stancard by testing that the compiler properly
implements legal language constructs and that 1t identifies and rejects
1llegal language constructs. The testing also identifies behavior that is
implementation-cdependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile time,
at link time, and during execution.

e

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an Ada
compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to i1dentify any language constructs not supported by the
compiler bu* required by the Ada Standard

To determine that the 1mplementat:i-n-dependent behavior 1s allowed
by the Ada Standard

Testing of this compiler was conducted by under <the direction of the AVF
according to procedures establ:ished by the Ada Joint Program Office and
administerec by the Ada Validation Organization (AY0O). On-site resting was
completeé x4 March 1989 at Alsys SA. 1n La Celle Saint Cloud, FRANCE.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act™(5
U.S5.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth 1in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

hAda Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

RFNCR

Tour Europe

cedex 17

F-92080 Paris la Défense

Questions regarding this report or the validation test results
be directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

INTRODUCTION

should

—.—

1.3 REFERENCES

INTRODUCTION

1. Reference Manual for the Ada Programming Language, ANSI/MIL-STD-

18154,

to

February 1983, and ISC 8652-1987.

. hda Compiier Validazion Procedures and Guidelines, Aada Joint Program

Office,

3. Ada Zompiler Validation Cavnanilitv Impiementers

1 January 1987.

Guide, SofTech,

Inc. December 1986.

wa

. Ada Compiler Validation Capab:l:ty User's Gu:de, December 1986

1.4 DEFINITION

ACVC

Ada Commentary

hda Standard
Applicant

AVF

AVO

Compiler

Failed test

Host

s

OF TERNMS

The Ada Compiler Validation Capability. The set of 2Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.
The agency requesting validation.

The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures

contained in the Ada Compiler Validation Procedures anid
Gu.delines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for wvalidation of Ada
compilers. The AVO provides administrative and technical
support for Ada val:dations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

INTRODUCTION

Inapplicable test An ACVC test that uses features of the language that
a compiler 1s nct required to support or may legitimately
support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn test An ACVC test found to be incorrect and not used to check
conformity to the Ada Standaréd. A test may be 1ncorrect
because 1t has an invalid test objective, fails to meet 1its
test objective, or contains 1llegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC contains
both legal and illegal Ada programs structured into six test classes: A, B,
C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable, and special
program units are used to report their results during execution. Class B
tests are expected to produce compilation errors. Class L tests are expected
to produce compilation or link errors.

Class A tests check that legal Ada programs can be successfully compiled and
executed. There are no explicit program components in a Class A test to
check semantics. For example, a Class A test checks that reserved worcs of
another language (other than those already reserved in the Ada language) are
not treated as reserved words by an Ada compiler. A Class A test 1s passed
it no errors are detected at compile time and the program executes to
produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test 1in this «class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED, FAILED,
or NOT APPLICABLE message indicating the result when it is executed.

INTRODUCTION

Class O <tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements p.aced on a compller by the Ada
Standard for some parameters--for example, the number of 1dentifiers
permitted 1n a corpilation or the number of units in a library--a compiler
may refuse to compiie a Class D test and stilii: be a conforming compiller.
Therefore, 1f a Class D test fails to comp.le because the capacity of the
compirler 1s exceeded, the test 1s classified as inappiicable. If a Class D
test compiles successfully, 1t 1s self-checking and produces a PASSED or
FAILED message during execution.

Each Class I test i1s self-checking and produces a NOT APPLICABLE, PASSED, or
FAILED message when 1t 15 compiled and executed. However, the Ada Standard
permits an implementation to reject programs containing some features
addressed b Class E tests during compilation. Therefcre, a Class E test 1s
pa~sed by a compiler 1f 1t 1s compiled successfully and executes to produce
a PASSED =message, or 1f 1t 1s rejected by the compiler for an allowable
reason.

Class L tests check that 1incomp.ete or 11llegal Ada oprograms 1involving
multipie, separately compiled units are detected and not allowed to execute.
Class L tests are compiled separately and execution is attempted. A Class L
test passes 1f 1t 1s rejected at link time--that 1s, an attempt to execute
the main program must generate an error message before any declarations in
the main program or any units referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of i1dentity functions used to
defeat some compi.er optimizations allowed by the Acda Standard that would
circumvent a test objective. The procedure CHECK_FILE 1is used to check the
contents of text files written by some of the Class C tests for chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE 1s checked by a
set of executable tests. These tests produce messages that are examined to
verify that the units are operating correctly. If these units are not
operating correctly, then the validation 1s not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with 2 maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation 1s provided
in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standaré by either meeting the pass
criteria given for the test or by showing that the test is inapplicabilie to
the implementation. The applicability of a test to an implementation 1s
considereé each time the 1implementation 1is validated. A test that is
inapplicable for one validation 1s not necessarily 1inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct 1s withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests withdrawn
at the time of this validation are given in Aprendix .

CONFIGURATION INFORMATION

to

CHAPTER

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: AlsyCOMP_005, Version 4.3

ACVC Version: 1.10

Certificate Number: 890314A1.10037

Host Computer:

Machine: SUN 3/260
Operating System: Sun OS release 3.2
Memory Size: 8 Mb

Configuration Information : MC68020 processor
MC 68881 floating-point COpProcessor

Target Computer:

Machine: SUN 3/260
Operating System: Sun 0S release 3.2
Memory Size: 8 Mb

Configuration Information : MC68020 processor
MC 68881 floating-point coprocessor

Communications Network: none

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers 1s to determine the behavior of
a compiler 1. those arcas of the Ada Standard that permit 1mplementations to
differ. Class D and E tests specifically check for such 1implementation
differences. However, tests in other «classes also charac<erize an
implementation. Th= tests demonstrate the following characteristics:

a. Capacitizs.

to
(V)]

(1) The compiler <corrertly processes a compilation containing 7
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly procecses tests contz2ining Tnon s
nested to 65 levels. (See tests DS5SA03A..H (& tests).)

(3) The compilier correctly processes a test containing block .statements
nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17 levels.
(See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This 1implementation supports the additional predefined types,
SHORT_INTEGER, LONG_INTEGER, LONG_FLOAT in the package STANDARD.
(See tests B86001T..Z (7 tests).)

c. Based literals.

(1) AD implementation 1s allowed raise NUMERIC_ERROR or
CONSTRAINT_ZRROR when a value exceeds SYSTEM.MAX_INT . This
_nplementation raises NUMERIC_ERROR during execution. (See test

Apmna \
EuééO&A.]

d. Expression evaluaticn.

The order in which expressions are evaluated and the time at which
constraints are checked .are not defined by the language. While the
ACVC tests do not specifically attempt to determine the order of
evaluation of expressions, test results indicate the following:

(1) Apparently no default initialization expressions for record
components are evaluated before any value is checked to belong to a
component's subtype. (See test C32117R.)

(2) Assignments for subtypes are performed with the same precision as
the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision. This
implementation uses all extra bits for eXxtra- range. (See test
C35903A.)

CONFIGURATION INFORMATION

(%) Apparently NUMERIC_ERROR i1s raised when an integer literal operand
1n a comparilson or membership test 1s outside the range of the base
type. (See test C45232A.)

{(3) Apparently NUMERIC _ERROR 1s raised when a literal operand :in a
fixed-point comparison or membership test .s outside the range of
the base type. (See test C45252A.)

{(6) Apparently underflow 1s gradual. (See tests C45524A..2.) (26 tests)

Rounding.

The method by which values are rounded in type <conversions is not
defined by the language. While the ACVC <tests do not spec:fically
attempt to determine the method of rounding, the test results indicate
the following:

(1) The method wused for rounding to integer is apparentliy round to
even. (See tests C46012A..2.) (26 tests)

{2) The method used for rounding to longest integer is apparently round
to even. (See tests C46012A..Z.) (26 tests)

(3) The method wused for rounding to integer in static universal real
expressions is apparently round to even. (See test C4A014A.)

Array types.

An i1mplementation 1s alloved to raise NUMERIC_ERROR or CONSTRAINT_ERROR
for an arrav having a 'LENGTH that exceeds STANDARD.INTEGER'LAST and/or
SYSTEM.MAX_INT. For this implementation:

(1) Declaration of an array type or subtype declaration with more than
SYSTEM.MAX_INT components raises NUMERIC_ERROR . lSee test
C36003A.)

(2) NUMERIC_ERROR i1s raised when 'LENGTH 1s applied to an array type
with INTEGER'LAST + 2 components. {(See test 36202A.)

(3) NUMERIC_ERROR is raised when an array type with SYSTEM.MAX_INT + 2
components 1s declared. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises no exce:-ion. (See test €52103X.)

(5) A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINT_ERROR when the length of a dimension
1s calculated and exceeds INTEGER'LAST. array objects are sliced.
(See test €52104Y.)

(6) In assigning one-dimensional array types, the expression appears to
be evaluated 1n its entirety before CONSTRAINT_ERROR 1is raised when
checking whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

CONFIGURATION INFORMATION

7 In assigning two-dimensional array types, the expression does not
appear to be evaluated 1in 1ts entirety before CONSTRAINT_ERROR 1is
raised when checking whether the expression's subtype 1s compatible
with the target's subtype. (See test C52013A.)

A null array with one dimension of length greater than INTEGER'LAST may
raise NUMERIC_ERROR or CONSTRAINT_ERROR either when declared or
assigned. Alternatively, an impiementation may accept the declaration.
However, 1lengths must match in array slice assignments. This
implementation raises no exception. (See test ES52103Y.)

Discriminated types.

{1) In assigning record types with discriminants, the expression
appears to be evaluated in 1ts entirety before CONSTRAINT_ERROR is
raised when checking whether th: expressicn's subtype is compatible
with the target's subtype. (See test C52013A.)

Aggregates.

(1) In the evaluatiorn cf a multi-dimensional aggregate, all choices
appear to be evaluated before checking against the index type. (See
tests C43207A and C43207B.)

{2) In the evaluation of an aggregate containing subaggregates, not all
choices are evaluated before being checked for identical bounds.
(See test E42212B.)

£3) All choices are evaluated before CONSTRAINT_ERROR is raised if a
bound 1n a non-null range of a non-null aggregate does not belong
to an index subtype. {(See¢ test E43211B.)

Pragmas.

(1) The pragma INLINE is supported for functions or procedures, but not
functions called inside a package specification. (See tests
LA3004h..B, ER3004C..D, and CA3004E..F.)

Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CHR2009C, CA2009F, BC3204C, and
BC3205D.)

(2) Generic subprogram declarations and bodies can be compiled in
separate compilations. (See tests CAl012A and CA2009F.)

(3) Generic 1library subprogram specifications and bodies can be
compiled in separate compilations. {(See test CA1012A.)

(4) Generic non-library package bodies as subunits can be compiled in
separate compilations. (See test CA2009C.)

CONFIGURATION INFORMATION

(7 GineTLC HMONTLINYAYY SUJDrograr J0GLo$S Cal de CORDLLIEC L Scwarale
cornsiatiens frox taely stuns. iSee« test TA20097.;

(e GelieYLC unit PnCie$ &Ll TNELY SUDURL™S Can De covpiled in separarte
co.p..ations. (See 1=s. CTA30LI.A..

(7) Generic package declarations ant¢ bocies can be compiled in separate
compilations. (See tests CA2009C, BC3204C, and BC3205D.)

(8) Generic :.brary package specifications ané bodies car be compiled
1n separate compilations. (See tests BC3204C and BC32050.)

(9) Generic unit bodies and their subunits can be compiied :in separate
compiliations. (See test Cr3CI1k.)

Input and output.

(2) The package SEQUENTIAL_IO can be instantiated with unconstrained
array types and recor¢ types with éiscriminants without defaults.
(See tests AE2101C, ET2201D, and EE2201E.)

(2) The package DIRECT_IO can be 1nstantiated with unconstrained array
types and record types with discriminants but CREATE will raise
USE_ERROR. (See tests AE2101H, EE2401D, and EE24016G.)

(&) Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_JO. (See
tests CE2102D..E, CE2102N, and CE2102P.)

{5) Modes IN_FILE, OUT_FILE, and INOUT_TILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T, and
CE2i02V.)

(€) Modes IN_FILE and OUT_FILE are support=d for text files. {See tests
CE3102E and CE3102I..K.)

(1) RESET and DELETE operations are supportec for SEQUENTIAL_IO. (See
tests CE2102G and CE2102X.)

(8) RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CE2102Y.;

(9) RESET and DELETE operations are supported for text <{iles. (See
tests CE3102F..G, CE3104C, CE3110A, and CE3114A.)

(10) Overwriting to a sequential file truncates to the 1last element
written. (See test CE2208B.)

{11) Temporary sequential files are given nam:s and deieted when closed.
(See test CE2108A.)

(12) Terporary direct files are given names ané deleted when closed.
{See test CE2108&C.)

e e

CONFIGURATION INFORMATION

Temporary text tiles are given names anc deleted when closed. (See
test CE311ZA.)

More than one 1internal fi1le can be associated with each external
file for sequentia. files when reading or writing (See tests
CEZ2.07A..E, CEZ102L, CE2110B, and CE2I1iZ.:

More than one internal file can be assocciated with each external
fiie for darect f:iles when reading or writing (See tests
CEZ2iC7F..I, CE2110D and CE2111H.)

More then one internal £file can be associated with each external
file for text files when reading or writing. (See tests CE311lA..E,
CE3.24B, and CE3115A.)

-

TEST INFORMATION

ew e
ChaPT Tk

TEST INFORXATIOR

3.1 TEST RESULT

Version 1.i0 of the ACVC comprises 37.7 tests. When this compiler was
tested, 43 *ests hacd been withdrawn because of test errors. The AVE
determined that 352 tests were 2napplicabie to this implementat:ion.

All 1napplicable tests were processed dur.ng validation testing

except for 201 executable tests that use fioating-point precision
exceeding that supported by the implementation. Modifications to the

code, processing, or grading for 51 tests were required. (See sectaion 3.6.;

The AVF concludes that the testing results demonstrate acceptabie
conformity to the Ada Standarc.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
""""""""" B >__E__u___
Passed 129 1132 1972 17 26 46 3322
Inegppiicanie 0 6 34¢ C 2 0 382
Vitadravn i 2 34 ¢ 3 c 43

TOTAL 130 1140 2350 27 34 <6 3717

TEST INFORMATION

RESULT CHAFTER TOTAL

Passed 192 577 555 248 172 99 16l 332 137 36 252 257 296 33

Inappl 14 72 125 0 0 0 5 1 0 0 0 118 25 352
Wdrn 1 1 0 0 0 0 4] z 0 0 I 35 4 43
TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWK TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

A39005G B97:02E BC3009B CD2A62D CD2h63A CD2A63B CD2A63C CD2A63D
CD2R66R CD2A66B CD2A66C CD2RA66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2R76B CD2A76C CD2AR76D CD2A81G CD2A83G CD2A84M CD2A84N
CD2D11B CD2B15C CD5007B CD50110 CD7105A CD7203B CD7204B (CD7205C
CD7205D CE21071 CE3111C CE3301A CE341iB E28005C ED7004B ED7005C
ED7005D ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INRPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler 1S not required by the Aca Standard to support. Others may
depent on the result of another test that is elther 1inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that i1s inapplicable for one
validation attempt is not necessarily inapplicable for a subseguent attempt.
For this validation attempt, 352 tests were inapplicable for the reasons
indicated:

The following 201 tests are not applicable because they have floating-
point type declarations requiring more digits than System.Max_Digits:

C24113L..Y (:4 tests) C35705L..Y (24 tests)
C35706L..Y (14 tests) €357C7L..Y (.4 tests)
C35708L..Y (14 tests) C35802L..2 (15 tests)
C45241iL..Y (14 tests) C4532:5L..Y (.4 tests)
C4542:L..Y (.4 tests) C4552-L..7 (15 tests)
C£3524L..2 (1% tests) 45%62.2..2 (.5 tests)
C4564.L..Y (14 tests) Cu60125L..2 (15 *ests)

ToST INFORMATION

JIRTI0A and BELOC.T are no @ui.lCan.e 2&Cause THi1s i1mpierentation
LRSI 2v=Cellned TYue SoIrt_I_wal
TSOEILNLLE L Teste) and CaDRllL.0T ca TeSTS) Eve DOU &@pn.iCad.e Decause
the va.ue of Systenm.Nax_MNantiss: 1S .eS$S tnan 30

C8600.F, 1s not app.icab:e Decause recoonpziation of Package SYSTEM 1is

not ailowed.

B86001X, (C45231D, anc CD7101G ar¢ not applicable because this
implementation does not support any predefined integer type with a nanme
other than Integer, Long_Integer, or Short_Integer.

BB60O0.IY 1s not applicablie beca.-e¢ this implementation supports no
predefined fixed-point type other tnan Duration.

B8600-2Z 1s not applicable because this implementation supports no
predefined floating-point type with a name other than Float, Long_Float,
or Short_Float.

B91001H 1s not applicable because address clause for entries 1is not
supported by this implementation.

CDi009C, CD2A4iIA..B, CD2A41E, CD2R42Ah..B, CDZ2AR42E..F, CD2A42I..J are not
applicable because size clause on float 1s not supported Dby this
implementation.

CD1C04B, CD1CO4E, CD4051A..D are not applicable because representation
ciause on derived records or dGerived tasks is not supported by this
inplementation.

CD2A84B..I, CD2A84K..L are not applicable because size clause on access
type 1s not supported by this implementation.

CDiCO4A, CD2K21C..D, CD2R22C..D, CD2A22G..H, CD2R31iC..D,
CD2AR32C..D, CD2A326G. .5, CD2K4:C..D, CD2A42C..D, CD2A42G. .H,
CD2A51C..D, CD2A52C..D, <CDZA52G..H, CD2E53D, <CD2A54D, CD2AS4H are
not app.icab.ie because size ciause for derived private type is not
supported by this imp.ementation.

CD2A61A..D,F,H,I, ,K,L, CD2R62A..C, CD2ATiA..D, CD2A72A..D, CD2A74A..D,
CD2A75A..D are not applicable because of the way this implementation
allocates storage space for one component, size specification clause for
an array type or for a record type requires compression of the storage
space needed for all the components (without gaps).

CD4041k is not applicable pecause alignment "at mod 8" is not supported
by this implementation.

BD5006D is not applicable because address clause for packages is not
supported by this implementataiorn.

CD50:1B,D,F,H,L,N,R, CD5012¢C,D,G,H,L, CD5013B,D,F,H,L,N,R, CD5014U,V are
not applicablie because acéress clause for a constant is not supportec by
this implementation.

TEST INFORMATION

CD5G.20. Cha011s, CD30.48 are not app.:cab.e hecause aldress clause for
: g UDOY el DY TRIS ITMDLENMENTETION.

R ol Tl W U . P . - e T ORI - o .-
CIZ2I0LT 28 LNELL__CED.e DerfEuSt TLLS InUleleiTATION SUDPOYIS Creatd wilh
SLolile nole tor SZQUINTIAL IO

CZ2.0LE 1s inapplicab.c DeCause Taizs irp_ementation supports create with
out_£file moGe for SEQUENTIAL_I

CE2102F 1s 1inapplicable because this implementation supports create with
1nout_£file mocde for DIRECT_IO.

CE2102I 1s inapplicable because this implementation supports create with
1in_file mode for DIRECT_IO.

CE2102J 1s 1inapplicable because this implementation supports create with
out_file mode for DIRECT_IO.

CE2102N 1s inapplicable because this implementation supports open with
in_file mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET with
in_file mode for SEQUENTIAL_IO.

CE2102P is inapplicable because this implementation supports open with
out_filie mode for SEQUENTIAL_IO.

CE2102Q is inapplicable because this implementation supports RESET with
out_file mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports open with
inout_file mode for DIRECT_IO.

CE21025 is inapplicable because this implementation supports RESET with
inout_file mode for DIRECT_IO.

CE2:02T is inapplicable because this impiementation supports open with
in_file mode for DIRECT_IO.

CE2102U is inapplicable because this :impiementation supports RESET with

in_£ile mode for DIRECT_IO.
CE2102V is inapplicable because this impiementation supports open with
out_file mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supports RESET with
out_file mode for DIRECT_IO.

EE2401D and EE2401G are not applicable because USE_ERROR is raised when
the CREATE of an instantiation of DIRECT_IO with unconstrained type is
called.

CE240.H 1is not applicable because create with inout_file mode for
unconstrained records with default discriminants i1s not supported by
this implementation.

CE3102Z is inapp.icable because this implementation supports create with
:n f1le nrocde for text files.

- Y . s

TEST INFORMATION

JTIL0IT Le 1nmantllcanlé beldUS: TNLS LUTLERERTITION SUDPOYrts resel foOr
text filcs, fcv ocon filel n_file anc fronm our_file twoin_file moGe.
CZ3.C05 28 tnepplicad.c DecauSe TLLIS IMpLciehiation suppor.s Cole710h of
o tMleYlié. To_c ItV TeXT tlles.

CE3:02I 1s 1nappiicable because this 1mpiementation supports create with
out_f:.e moGe for text fiies.

CE3102J 1s 1inappiicable because this implementation supports open with
in_file mode for text files.

CE3102K 1s 1napplicable because this implementation supports open with
out_file moce for text files.

CE3202A

reguires tne association of a name with the standard

output files. This 1s not supported by the implementation and

is raised

at execution. This behavior is accepted by the AVO

ruling by the langage maintenance body.

input and
USE_ERROR
pending a

TEST INFORMATION

3.0 TEST. PEOCZESSING, AND EVALUATION MODIFTICATIORS

1T LE &MDECTel TnET sOme té¢sIS Wi.. require vrwocifications of coce,

Processing, ov eva.uation in orcer 1o cornpensate for legitimate
r Yocdifications are made Dy the AVF 1in cases where

L
impiementation behavior.
legitimate impiementation behavior prevents the successful completion of an
(otherwise) applicablie test. Examples of such modi:fications include: adding
a length clause to alter the default size of & collection; splitting a Class
B test 1nto subtests so that all errors are detected; and confirming that
messages produced by an executable test demonstrate conforming behavior that
wasn't ant:cipateé by the test (such as raising one exception instead of
another).

Moc:ficat:ions were reguirec¢ for 51 tests.

The test ER3004D when run as 1%t 1s, the implementation fails to detect an
error on line 27 of test file EA3004D6M (line 115 of "cat -n ea3004d4*").
This i1s because the pragma INLINE has no effect when its object is within a
package specification. However, the results of running the test as it is
does not confirm that the pragma had no effect, only that the package vas
not made obsolete. By re-ordering the compilations so that the two
subprograms are compiled after file D5 (the re-compilation of the "with"ed
package that makes the various earlier units obsolete), we create a test
that shows that indeed pragma INLINE has no effect when applied to a
subprogram that is called within a package specification: the test then
executes and produces the expected NOT_APPLICABLE result (as though INLINE
were not supported at all). The re-ordering of ER3004D test files is
0-1-4-5-2-3-6.

The following 27 tests were split because syntax errors at one point
resulted 1in the compiler not detecting other errors in the test:

23004 B24007R B24009R B28003R B32202A B32202B B32202C B33001A B36307A
B37004A B49003A B49005A B61012k B62001B B74304B B74304C BT74401F B74401R
B91004A B95032A B95069A B95069B BA1101B2 BA110iB4 BC2001D BC3009A BC3009C
BD5005B

The foliowing 21 tests were split 2an orcer to show that the compiler was
able to find the representation clause incéicated by the comment
--N/k =>ERROR :

CD2A61A CD2A61B CDZAE1F CD2R61I CD2R61J CD2A62A CDZA62B CD2ART71A CD2A72B
CD2A72R CD2A72B CD2A75A CD2AT5B CD2A84B CD2A84C CD2AR84D CD2A84E CD2AB4F
CD2A84G CD2A84H CD2A84I

¥odified versions were produced for the following 2 tests, in order to have
the test run to completion and fully exhibit the test behavior:

. In test C87B62B, an explicit STORAGE_SIZE clause was added for the
access type declared at line 68. This alilows the test to execute
without raising STORAGE_ERROR and to meet 1its objective (test
overioading resolution in expression within length clause). The test
then produces the expected PASSED resuit.

“+3T INFORMATION

In test (CI3202A, the NAME (STANDARD_INPUT) and NAME (STANDARD_OUTPUT)
calls at l:nes 25 and 29 were encapsulated 1n blocks with explic:it
exception handlers that produce a NOT_APPLICABLE result 1in the
USE_ZIRROR case, and a FTAILED result 1in the OTHERS case. The test then
produces <he expected NCT_APFLICTABLE result.

CE3202A reguires the associat-on of a name with the standard input and
output fil2s. This 1s not supported by tane lmpiementation and USZ_ZRROR
1s raised at execution. This behavior 1s accepted by the AVC pending a
rullng by the langage maintenance pody.

BA2001E requires that duplicate names of subunits with a common ancestor be
detected and rejected at corpile time. This implementation det.cts the error

lin¥k time, anc¢ the AVO ruled that thls behavier 15 acciptall-.

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by
the AlsyCOMP_(C02 was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully passed
all applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

3.7.2 Test Method

Testing of the AlsyCOMP_002 using ACYC Version 1.10 was conducted on-site by
a validation team from the AVF. The configuration consisted of a EP &¢200 §
350 operating under HP-UX, Version 6.2.

A tape containing all tests was taken on-site by the validation team for
processing. Tests that make use of implementation-specific wvalues vwere
customized by Alsys after loading of the tape.

The contents of the tape were not loaded directly onto the host computer.
They were 1loaded on a VAX/VMS machine and transferred via a network to the
HP 9000 § 350. This is the reason why prevalidation tests were used for the
the validation. Those tests were loaded by Alsys from a magnetic tape
containing all tests provided by the AVF. Customization was done by Alsys.
All the tests were checked at prevalidation time.

Integrity of the validation tests was made by checking that no modification
cf the test occured after the time the prevalidation results were
transferred on cartridge tape for submission to the AVF. This check was
performed by verifying that the date of creation (or last modification) of
the test files was carlier than the prevalidation date. After validation was
performed, 80 source tests were selected by the AVF and checked for
integrity.

The full set of tests was compiied, linked, and alil executable tests were
run on the HP 9000 S 350. Results were printed from the host computer.

The compiler was tested using command scripts provided by Alsys and reviewed
by the validation team. The compiler was tested using all default option
settings except for the following:

OFTION / SWITCH EFFECT

FLOAT=MC68881 A Floating point operations use the MC68881 arithmetic
coprocessor

CALLS=INLINED Allow inline insertion of code for subprograms and take

pragma INLINE into account

REDUCTION=PARTIAL Perform some high 1level optimizations on checks and
loops

st

TEST INFORMATION

EXPRESSION=PARTIAL Perform some lov level optimizations on common
subexpressions and regilster allocation

Tests were comp:led, linked, ané executed (as appropriate] using a single
computer. Test output, compilation listings, and job logs were captured on
cartridge tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test S:ite

Testing was conducted at Alsys, SA. in La Celle Saint Cloud, FRANCE and was
completed on 14 March 1989.

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

Alsys has submitted the following
Declaration of Conformance concerning the AlsyCOMP_002.

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE
Compiler Implementor: Rlsys

Ada Validation Facility: AFNOR, Tour Europe Cedex 7,
F-92080 Paris la Défense

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: AlsyCOMP_005 Version 4.3
Host Architecture: SUN 3/260

HOST 0S and Version: Sun 0S release 3.2
Target Architecture: SUN 3/260

Target OS and Version: Sun OS release 3.2

Implementor's Declaration

I, the undersigned, representing Alsys, have implemented no deliberate
extensions to the Ada Language Standard ANSI/MIL~STD-1815A in the
compiler(s) listed in this declaration. I declare that Alsys is the owner of
record of the Ada language compiler(s) 1listed above and, as such, is
responsible for maintaining said compiler(s) in conformance to ANSI/MIL-STD-
1815A. All certificates and registrations for Ada language compiler(s)
listed in this declaration shall be made only in the owner's corporate name.

‘-——);:“'A p -:_}/—\
—33;‘3524_““‘ Date: 30 MAL19RQ

Alsys
Etienne Morel, Managing Director

DECLARATION OF CONFORMANCE

Owner's Declaration

I, the undersigned, representing Alsys, take full responsibility for
implementation and maintenance of the Ada compiler(s) listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance, are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

—hrmds—

Alsys
Etienne Morel, Managing Direc. -~

Date: 3|!Mﬂ|1989

TEST PARAMETERS

APPENDIX B

TEST PARAMETERS

Certain tests in the ACVC make use of implementat:ion-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is 1dentified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1s run. The values used for this validation are given below.

Name and Meaning Value
SACC_SIizz 32

An integer literal whose value

1s the number of bits sufficient

to hcld any value of an access

type.

SBIG_ID1 'X234567890"&(24*'1234567890"')&'12341"
Identifier the size of the

maximum input line length

with varying last character.

$BIG_ID2 'X234567890"&(24*"'2234567890")&'12342"
Identifier the size of the

maximum 1nput line length

with varying last character.

SBIG_ID3 'X234567890"'&(21%'1234567890")
&'12345%XX3XX12345'&(12%"'1234567890") "'

Identifier the size of the

maximum input line length ’

with varying middle character.

SBIG_ID4 'X234567890'&(11%"'1234567890"')*
&'12345XX4XX12345"'&(12%"1234567890") "

Identifier the size of the

maximum input line length

with varying middle character.

Name and Meaning

SBIG_INT_LI

An nteger literai cf value
298 with enough leading zeroes
so that i1t 1s the size of the
maximum .1ne length.

SBIG_REAL_LIT

A universal real literal of
value 690.0 with enough
ieading zeroes to be the size
of the maximum line length.

SBIG_STRING1

A string literal which when
catenated with BIG_STRING2
yields the image of BIG_IDI.

SBIG_STRING2

A string literal which when
catenated to the end of
BIG_STRINGl yields the 1mage
of BIG_IDi.

SBLANKS

A sequence of blanks twenty
characters less than the size
of the maxaimum line length.

SCOUNT_LAST

A universal integer literal whose

value is TEXT_IO.COUNT'LAST.

SDEFAULT_MEZM_SIZE
An integer literal whose value
1s SYSTEM.MEMORY_SIZE.

SDEFAULT_STOR_UNIT
An integer literal whose value
is SYSTEX.STORAGE_UNIT.

SDEFAULT_SYS_NAME
The value of the constant
SYSTEM.SYSTEM_NAME.

SDELTA_DOC
A real literal whose value is
SYSTEM.FINE_DELTA.

TEST PARAMETERS

(250 * '0') & '690.0'

"MT&'X234567890"&(13*"1234567890") &'’

"M (13%71234567890")&"12341"&" "’

(235 = ' ")

2_147_483_647

2%x*32

UNIX

2#1.08E-31

C e

Name an¢ Meaning

SFIELD_LAST

A universal integer literal whose

value 1s TEXT_IC.TIELD'LAST.
SFIXED_NAME
The name nf a predefined

fixed-point type other than
DURATION.

SFLOAT_NAME
The name of a predefined

floatzng-point type other than

FLOAT., SHORT_FLOAT, o:
LONG_FLOAT.

SGREATER_THAN_DURATION

A universal real l:teral that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value

in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LA
A universal real litera. that 1is
greater than DURATION'BASE'LAST.

SHIGH_PRIORITY

Ah 1lnteger literal whose value
1s the upper bound of the range
for the subtype SYSTEM.PRIORITY.

SILLEGAL_EXTERMAL_FILE_NAMEl

An external file name specifying

a non existent directory

SILLEGAL_EXTERNAL_FILE_NAMEZ

An external file name different
from SILLEGAL_EXTERNAL_FILE_NAMEL

SINTEGER_FIRST
A universal integer literal

whose value 1s INTEGER'FIRST.

SINTEGER_LAST
A universal integer literal
whose value 1s INTEGER'LAST.

SINTEGER_LAST_PLUS 1
A universal integer literal

whose value is INTEGER'LAST + 1.

'EST PARAMETERS

NO_SUCH_TYPE

NO_SUCH_TYPE

100_000.0

100_000_000.0

127

/7/*/f1

/7/*/f2

-32768

32767

32768

Name and Meaning
SLESS_THAN_DURATION
A universal real literal t
lies between DURATION'BASE'
and DURATION'FIRST or any vaiue
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIKRST
A universal real literal that 1is
less than DURATION'BASE'FIRST.

SLOVW_PRIORIT

An integer lateral whose valiue
1s the lower bound of the range
for the subtype SYSTEM.PRIORITY.

SMANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX_MANTISSA.

SMAX_DIGITS
Maximum digits supported for
floating-point types.

SMAX_IN_LEN
Maximum 1input line length
permitted by the implementation.

SMAX_INT
A universal 1nteger literal
whose value 1s SYSTEM.MAX_INT.

SMAX_INT_PLUS_1
A universal integer literal
whose value is SYSTEM.MAX_INT+1.

SMAX_LEN_INT_BASED_LITERAL
A universal :nteger based
literal whose value 1s 2:11:
with enough leading zeroes in
the mantissa to be MAX_IN_LEN
long.

SMAX_LEN_REAL_BASED_LITERAL

A universal real based literal
whose value is 16: F.E: with
enough leading zeroes in the
mantissa to be MAX_IN_LEN long.

TEST PARAMETERS

-100_000.0

~100_000_000.0

31

15

255

2_147_483_647

2_147_483 A4S

0') & 'lid

'16:' & (248 * '0') & 'F.E:'

Name and Meaning
SMAX_STRING_LITERAL

A string literal of size
MAX_IN_LEN, :ncluding the quote
characters.

SYIN_INT

A universal integer literal
whose value 1s SYSTEM.MIN_INT.

SKIN_TASK_SIZE

An 1nteger literal whose value
1s the number of bits required
to hold a task object which has
no entries, no declarations, and
NULL;" as the only statement in
1ts body.

SNAME

A nane of a predefined numeric
type other than FLOAT, INTZGZR,
SHORT_FLOAT, SHORT_INTEGER,
LONG _TLOAT, or LONG_INTEGER.

SNAME_LIST

A iist of enumeration literals
in the type SYSTEM.NANME,
separated by commas.

SNEG_BASED_INT

A based integer literal whose
highest order nonzero bit falls

in the sign bit position of the
representation for SYSTEM.MAX_INT.

SNEW_MEM_SIZE

An integer literal whose value
is a permitted argument for
pragma memory_size, other than
DEFAULT_MEM_SIZE. If there is
no other value, then use
DEFAULT_MEM_SIZE.

SNEW_STOR_UNIT

An 1integer literal whose value

1s a permitted argument for
pragma storage_unit, other than
DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

TEST PARAMETERS

"MT&(25*% '123456789C')1&"123'&" !

-2147483648

32

NO_SUCH_TYPE

UNIX

164FFFFFFFES

2**32

Name and Meaning
SNEW_SYS_NAME
A value of the type SYSTEM.NAME,
other than SDEFAULT_SYS_NAME. If
there 1s only one vaiue of that
type, then use that value.

STASK_SIZE

An i1nteger literal whose value
1s the number of bits required
to hold a task object which has
& sing.ie entry with one 1nout
parameter.

STICK
A real literal whose value 1s
SYSTEM.TICK.

TEST PARAMETERS

[
(o]

4ITHDRAWN TESTS

APPENDIX C

ITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdiawn at the time of
validat:ion testing for the reasons indicated. A reference of the form Al-
ddddd 1s to an Ada Commentary.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204 will
appear at the top of the listing page due to a pragma PAGE in line 203; but
line 203 contains text that follows the pragma, and it is this that must
appear at the top of the page.

A390056
This test unreasonably expects a component clause to pack an array component
1into a minimum size (line 30j.

B97102E
Thils test contains an unitended illegality: a select statement contains a
null statement at the place of a selective wailt alternative (line 31).

BC3009B
This test wrongly expects that circular instantiations will be detected in
several compilation units even though none of the units is illegal with re-
spect to the units 1t depends on; by AI-00256, the illegality need not be
detected until execution i1s attempted (line 95).

CD2A62D
This test wrongly requires that an array object's size be no greater than 10
although 1ts subtype's size was specified to be 40 (line 137).

CD2A63A..D, CLD2A66A..D, CDIAT3A..D, CD2AT76A..D [16 tests]
These tests wrongly attempt to check the si2ze of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a derived sub-
program (which implicitly converts them to the parent type (Ada standard
3.4:14)). Additionally, they use the 'SIZE length clause and attribute,
whose interpretation is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84N & M, & CD50110 [5 tests]
These tests assume that dependent tasks will terminate while the main pro-
gram executes a loop that samply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85, 86 & 96,
86 & 96, and 58, resp.).

WITHDRAWN TESTS

€D2B15C & CD7205C
These tests expect that a 'STORAGE_SIZZ length clause provides precise con-
trol over the number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

¢hDaril
This test gives a SMALL representation clause for a derived fixed-point type
{at line 30) that defines a set of model numbers that are not necessarily
represented 1n the parent type; by Commentary AI-00099, all model numbers of
a derived fixed-point type must be representable values of the parent type.

€D50078
This test wrongly expects an implicitly declared subprogram to be at the
the address that 1s specified for an unrelated subprograr {line 2302}

ZD7004B, £D7005C & D, ED7006C & D 5 tests]
These tests check various aspects of the use of the three SYSTEM pragmas;
the AVO withdraws these tests as being inappropriate for validation.

CD7105A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, 1t 1s only the expected
frequency of change that must be at least SYSTEM.TICK--particular instances
of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose interpretation
1s considered problematic by the WG9 ARG.

CD7205D
This test checks an 1nvalid test objective: 1t treats the specification of
storage to be reserved for a task's activation as though 1t were like the
specification of storage for a collection.

CE2107I
This test requires that objects of two similar scalar types be distinguished
when read from a fi1le--DATA_ERROR 1is expected to be raised by an attempt to
read one object as of the other type. However, 1t is not clear exactly how
the Ada standard 14.2.4:4 1s to be interpreted; thus, this test objective 1s
not considered vaiid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with the
same external file, that 1s not required by the Ada standard.

CE3301A
This test contains several calls to END_OF_LINF & END_OF_PAGE that have no
parameter: these calls were intended to specify a file, not to refer to
STANDARD_INPUT (lines 103, 107, 118, 132, & 136).

CE3411B
This test requires that a text file's column number be set to COUNT'LAST 1in
ord-r to check that LAYOUT_ERROR is raised by a subsequent PUT operation.
But the former operation will generally raise an exception due to a lack of
available disk space, and the test would thus encumber validation testing.

. pevp

APPENDIX F OF THE Ada STANDARD

APPENDIX D

APPENDIX F OF THE Ada STANDARD

The only aliowed implementation dependencilies correspond to implementation-
deper.dent pragmas, ¢to certain machine-dependent conventions as mentioned 1in
chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of the
AlsyCOMP_002, Version 4.3, are described in the following sections, which
discuss topics in Appendix T of the Ada Standard. Implementation-specific
portions of the package ~.2 .DARD are also includedé in this appendix.

package STANDARD 1s

type INTEGEx is range -32_768 .. 32_767;
type SHORT_INTEGER 1s range -128 .. 127;
type LONG_INTEGER 1s range -2_147_483_648 .. 2_147_483_647;

tvpe FLOAT
1

2#1.111_31171 3131111211 _1111_11118E+127;

type LONG_FLOAT 1s digits 15 range
-2#1.31233 1111 1232111111321 _1231_ 131121123 2233 _1TiTOTLiI_1111_11114E1023

2#1.1111.1111_1211.11221_.1111.1111_.1111_1111_1111_2111_ 1111 1111_11114E1023;
type DURATION is delta 2#0.000_000_000_000_Ol# range --86_400.0 ..86_400.0;

end STANDARD;

APPENDIX F

1 INTERFACING THE LANGUAGE ADA WITH OTHER
LANGUAGES

Programs written in Ada can interface with external subprograms written in another
language, by use of the INTERFACE pragma. The format of the pragma is:

pragma INTERFACE (language name , Ada_subprogram_name) ;
where the /anguage name can be any of

s Assembler

s C
e Fortran
s Pascal

It should be emphasized that in the discussion which follows the standard HP products
are being considered. Compiler products other than those provided by HP or Alsys may
not conform to the conventions given below.

The Ada__subprogram_name is the name by which the subprogram is known in Ada. For
example, to call a subprogram known as FAST_FOURIER in Ada, written in C, the
INTERFACE pragma is:

pragma INTERFACE (C, FAST_FOURIER);
To relate the name used in Ada with the name used in the original language, the Alsys
Ada compiler converts the latter name to lower case and truncates it to 32 significant
characters.
To avoid naming conflict with routines of the Alsys Ada Executive, external routine
names should not begin with the letters alsy (whether in lower or upper case or a
combination of both).

[4

To allow the use of non-Ada naming conventions, such as special characters, or case
sensitivity, an implementation-dependent pragma INTERFACE_NAME has been
introduced:

pragma INTERFACE__NAME (Ada_subprogram_name, name_string) ;
so that, for exam'ple,

pragma INTERFACE__NAME (FAST_FOURIER, "fft"),

AlsyCOMP Appendix F Version 4.1)

will associate the FAST__FOURIER subprogram in Ada with the C subprogram fft.

In order to conform to the naming conventions of the UNIX Linker, an underscore is
prepended to the name given by name_string, the result is then truncated to 255
characters.

The pragma INTERFACE_NAME may be used anywhere in an Ada program where
INTERFACE is allowed (see ([13.9]). INTERFACE_NAME must occur after the
corresponding pragma INTERFACE and within the same declarative part.

2 IMPLEMENTATION-DEPENDENT PRAGMAS

Pragma INTERFACE

This pragma has been described in the previous section.

Pragma IMPROVE and Pragma PACK

These pragmas are discussed in sections 5.7 and 5.8 on representation clauses for arrays
and records.

Note that packing of record types is done systematically by the compiler. The pragma
pack will affect the mapping of each component onto storage. Each component will be
allocated on the logical size of the subtype.
Example:
type R is
record
Cl : BOOLEAN; C2 : INTEGER range | .. 10;
end record;
.pragma PACK(R);
-~ the attribute R'SIZE returns 5
Pragma INDENT

This pragma is only used with the Alsys Reformatter; this tool offers the functionalities
of a pretty-printer in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.
pragma INDENT(OFF)

causes the Reformatter not to modify the source lines after this pragma.
pragma INDENT(ON)

causes the Reformatter to resume its action after this pragma.

Pragmas not implemented

AlsyCOMP Appendix F Version 4.1 2

The following pragmas are not implemented:
CONTROLLED
MEMORY_SIZE
OPTIMIZE

STORAGE_UNIT
SYSTEM_NAME

3 IMPLEMENTATION-DEPENDENT ATTRIBUTES

In addition to the Representation Attributes of [13.7.2] and [13.7.3]), there are four
atiributes which are listed under F.5 below, for use in record representation clauses.
Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses and will therefore cause a

compilation error if used as prefix to ADDRESS:

s A constant that is impiemented as an immediate value i.e., does not have any
space allocated for it.

s A package specification that is not a library unit.

s A package body that is not a library unit or a subunit.

4 PACKAGES SYSTEM AND STANDARD

This section contains information on two predefined library packages:
« a complete listing of the specification of the package SYSTEM

s a list of the implementation-dependent declarations in the package
STANDARD.

package SYSTEM is
-- Standard Ada definitions
type NAME is (UNIX) ;

SYSTEM_NAME : constant NAME := UNIX;
STORAGE_UNIT : constant := § ;

MEMORY_SIZE : constant := 2%%32 |
MIN_INT : coastant = -(2%*3]) ;
MAX_INT : constant := 2**3]-] ;
MAX_DIGITS : constant .= 15 ;
MAX_MANTISSA : coanstant := 3| ;
FINE_DELTA : constant ;= 2»| Ome-31] ;
TICK : constant := 1.0 ;

AlsyCOMP Appendix F Version 4.1 3

type ADDRESS is private;
NULL_ADDRESS : constant ADDRESS;

subtype PRIORITY is INTEGER range 1..127;
-- Address arithmetic

function TO_LONG_INTEGER (LEFT : ADDRESS)
return LONG_INTEGER,;

function TO_ADDRESS (LEFT : LONG_INTEGER)
return ADDRESS;

function "+" (LEFT : LONG_INTEGER; RIGHT : ADDRESS)
return ADDRESS;

function "+" (LEFT : ADDRESS; RIGHT : LONG_INTEGER)
return ADDRESS;

function "-" (LEFT : ADDRESS; RIGHT : ADDRESS)
return LONG_INTEGER;

function "-" (LEFT : ADDRESS; RIGHT : LONG__INTEGER)
return ADDRESS;

function "mod” (LEFT : ADDRESS; RIGHT : POSITIVE)
return NATURAL;

function "<* (LEFT : ADDRESS; RIGHT : ADDRESS)
return BOOLEAN;

function "<=" (LEFT : ADDRESS; RIGHT : ADDRESS)
return BOOLEAN;

function ">" (LEFT : ADDRESS; RIGHT : ADDRESS)
return BOOLEAN;

function ">=" (LEFT : ADDRESS; RIGHT : ADDRESS)
return BOOLEAN;

function IS_NULL (LEFT : ADDRESS)
return BOOLEAN;

function WORD_ALIGNED (LEFT : ADDRESS)
return BOOLEAN;

function ROUND (LEFT : ADDRESS)
return ADDRESS;
-- Return the given address rounded to the next lower even value

procedure COPY (FROM: ADDRESS; TO : ADDRESS; SIZE : NATURAL);

-- Copy SIZE storage units. The result is undefined if the two areas
-=- overlap.

AlsyCOMP Appendix F Version 4.1

-- Direct memory access

generic

type ELEMENT_TYPE is private;
function FETCH (FROM : ADDRESS) return ELEMENT_TYPE;
-- Return the bit pattern stored at address FROM, as a value of the
-- specified ELEMENT_TYPE. This function is not implemented
-- for unconstrained array types.

generic
type ELEMENT_TYPE is private;
procedure STORE (INTO : ADDRESS; OBJECT : ELEMENT_TYPE),
-- Store the bit pattern representing the value of OBJECT, at the
-~ address INTO. This function is not implemented for
-- unconstrained array types.

private
-- private part of the system

end SYSTEM,;

The package STANDARD
The following are the implementation-dependent parts of the package STANDARD:

type SHORT _INTEGER is range -(2**7) .. (2**7 -1);
type INTEGER is range -(2**!5) .. (2**15 -1);
type LONG__INTEGER is range -(2**31) .. (2**31 -1),

type FLOAT is digits 6 range
-(2.0 - 2.0%%(-23)) * 2.0**127 ..
+H2.0 - 2.0*%(-23)) * 2.0**127,

type LONG_FLOAT is digits 15 range
-(2.0 - 2.0*%(-51)) * 2.0**1023 ..
+2.0 - 2.0**%(-51)) * 2.0**1023;

type DURATION is delta 2.0**(-14) range -86_400.0 .. 86_400.0;

5 TYPE REPRESENTATION CLAUSES

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the
representation of the corresponding objects is degcribed.

AlsyCOMP Appendix F Version 4.1 S

Except in the case of array and record types, the description for each class of type is
independeat of the others. To understand the representation of an array type it is
necessary 1o understand first the representation of its components. The same rule applies
to record types.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

» a (predefined) pragma PACK, when the object is an array, an array
component, a record or a record component

= a record representation clause, when the object is a record or a record
component

e« a size specification, in any case.
For each class of types the effect of a size specification alone is described. Interference
between size specifications, packing and record representation clauses is described under
array and record types.
5.1 Enumeration Types
Size of the objects of an enumeration subtype
Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an enumeration subtype has the same size as its subtype.
Alignment of an enumeration subtype
An enumeration subtype is byte aligned if the size of the subtype is less than or equal to
8 bits, it is otherwise even byte aligned.
Address of an object of an enumeration subtype
Provided its alignment is not constrained by a record representation clause or a pragma
PACK, the address of an object of an enumeration subtype is even when its subtype is
even byte aligned.
5.2 Integer Types

Size of the objects of an integer subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of an integer subtype has the same size as its subtype.

AlsyCOMP Appendix F Version 4.1 6

Alignment of an integer subtype

An integer subtype is byte aligned if the size of the subtype is less than or equal to 8
bits, it is otherwise even byte aligned.

Address of an object of an integer subtype

Provided its alignment is not constrained by a record representation clause or 2 pragma
PACK, the address of an object of an integer subtype is even when its subtype is even
byte aligned.

5.3 Floating Point Types

Size of the objects of a floating point subtype

An object of a floating point subtype has the same size as its subtype.

Alignment of a floating point subiype

A floating point subtype is always even byte aligned.

Address of an object of a floating point subtype
 Provided its alignment is not constrained by a record representation clause or a pragma

PACK, the address of an object of a floating point subtype is always even, since its
subtype is even byte aligned.

5.4 Fixed Point Types

Size of the objects of a fixed point subtype

Provided its size is not constrained by a record component clause or a pragma PACK, an
object of a fixed point type has the same size as its subtype.

Alignment of a fixed point subtype

A fixed point subtype is byte aligned if its size is less than or equal to 8 bits, and is
otherwise even byte aligned.

Address of an object of a fixed point subtype
Provided its alignment is not constrained by a record representation clause or a pragma

PACK, the address of an object of a fixed point subtype is even when its subtype is
even byte aligned.

AlsyCOMP Appendix F Version 4.1 7

5.5 Access Types

Size of an object of an access subtype

An object of an access subtype has the same size as its subtype, thus an object of an
access subtype is always 32 bits long.

Alignment of an access subtype.

An access subtype is always even byte aligned.

Address of an object of an access subtype

Ve

Provided its alignment is not constrained by 2 record representation clause or a pragma
PACK, the address of an object of an access subtype is always even, since its subtype is
even byte aligned.

5.6 Task Types

Size of the objects of a task subtype

An object of a task subtype has the same size as its subtype. Thus an object of a task
subtype is always 32 bits long.

Alignment of a task subtype

A task subtype is always even byte aligned.

Address of an object of a task subtype

Provided its alignment is not constrained by a record representation clause, the address
of an object of a task subtype is always even, since its subtype is even byte aligned.

5.7 Array Types

Size of the objects of an array subtype

The size of an object of an array subtype is always equal to the size of the subtype of
the object.

Alignment of an array subtype

If no pragma PACK applies to an array subtype and no size specification applies to its

components, the array subtype is even byte aligned if the subtype of its components is
even byte aligned. Otherwise it is byte aligned.

AlsyCOMP Appendix F Version 4.] 8

e

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (5o that there are no gaps), the alignment of the array subtype is as given in
the following table:

relative displacement of components
even number odd number not a whoie
of bytes of bytes number of bytes

even byte even byte byte bit
Component
subtype byte byte byte bit
alignment

bit bit bit bit

Address of an object of an array subtype

Provided its alignment is not constrained by a record representation clause, the address
of an ¢bject of an array subtype is even when its subtype is even byte aligned.

5.8 Record Types

Size of an object of a record subtype
An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 kb. If the size of the subtype is greater than this, the otject has
the size necessary to store its current value; storage space is allocated and released as the
discriminants of the record change.

Alignment of a record subtype

When no record representation clause applies to its base type, a record subtype is even
byte aligned if it contains a component whose subtype is even byte aligned. Otherwise
the record subtype is byte aligned. -

When a record representation clause that does not contain an alignment clause applies to
its base type, a record subtype is even byte aligned if it contains a component whose
subtype is even byte aligned and whose offset is a multiple of 16 bits. Otherwise the
record subtype is byte aligned.

When a record representation clause that contains an alignment clause applies to its base

type, a record subtype has an alignment that obeys the alignment clause An alignment
clause can specify that a record type is byte aligned or even byte aligned.

AlsyCOMP Appendix F Version 4.1 9

Address of an object of a record subtype

Provided its alignment is not constrained by a representation clause, the address of an
object of a record subtype is even when its subtype is even byte aligned.

6 ADDRESS CLAUSES

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in RM
13.5. When such a clause applies to an object no storage is allocated for it in the
program generated by the compiler. The program accesses the object using the address
specified in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
size is greater than 8 kb.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented in the current version of the
compiler.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented in the current version of the compiler.

6.4 Address Clauses for Constants

Address clauses for constants are not implemented in the current version of the
compiler.

7 UNCHECKED CONVERSIONS

Unconstrained arrays are not allowed as target types. Unconstrained record types without
defaulted discriminants are not allowed as target types. Access to unconstrained arrays
are not allowed as target or source types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal,

If a composite type is used either as source type or as target type this restriction on the
size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

AlsyCOMP Appendix F Version 4.] 10

In other cases the effect of unchecked conversion can be considered as a copy:

= if an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source
operand: the result has the size of the source.

s« if an unchecked conversion is achieved of a composite source type to a scalar
or access target type, the result of the function is a copy of the source
operand: the resuit has the size of the target.

8 INPUT-OUTPUT CHARACTERISTICS

In this part of the Appendix the implementation-specific asne~te of the input-cuiput
system are described.

8.1 Introduction

In Ada, input-output operations (IO) are considered to be performed on objects of a
certain file type rather than being performed directly on external files. An external file
is anything external to the program that can produce a value to be read or receive a
value to be written. Values transferred for a given file must be all of one type.

Generally, in Ada documentation, the term file refers to an object of a certain file type,
whereas a physical manifestation is known as an external file. An external file is
characterized by

» Its NAME, which is a string defining a legal path name under the current
version of the operating system.

e Its FORM, which gives implementation-dependent information on file
characteristics.

Both the NAME and THE FORM appear explicitly as parameters of the Ada CREATE
and OPEN procedures. Though a file is an object of a certain file type, ultimately the
object has to correspond to an external file. Both CREATE and OPEN associate a
NAME of an external file (of a certain FORM) with a program file object.

Ada 10 operations are provided by means of standard packages [14].

SEQUENTIAL_10 A generic package for sequential files of a single element

type.
DIRECT_IO A generic package for direct (random) access files.
TEXT_10 A generic package for human readable (text, ASCII) files.

IO_EXCEPTIONS A package which defines the exceptions needed by the
above three packages.

AlsyCOMP Appendix F Version 4.1 11

The generic package LOW_LEVEL_ 10O is not implemented in this version.

The upper bound for index values in DIRECT_IO and for line, column and page
numbers in TEXT_IO is given by

COUNT'LAST = 2**3] -1
The upper bound for field widths in TEXT_IO is given by

FIELD'LAST = 255

8.2 The FORM Parameter

The FORM parameter of both the CREATL and OPEN procedures in Ada specifies the
characteristics of the external file involved.

The CREATE procedure establishes 2 new external file, of a given NAME and FORM,
and associates it with a specified program file object. The external file is created (and
the file object set) with a specified (or default) file mode. If the external file already
exists, the file will be erased. The exception USE__ERROR is raised if the file mode is
IN_FILE. .
xample:
CREATE(F, OUT_FILE, "MY_FILE",

FORM =>

"WORLD => READ, OWNER => READ_WRITE");
The OPEN procedure associates an existing external file, of a given NAME and FORM,
with a specified program file object. The procedure also sets the current file mode. If

there is an inadmissible change of mode, then the Ada exception USE_ERROR is
raised.

The FORM parameter is a string, formed from a list of attributes, with attributes
separated by commas (,). The string is not case sensitive (so that, for example, HERE
and here are treated alike). (FORM attributes are distinct from Ada attributes.) The
attributes specify:

» File protection

s File sharing

» File structure

s Buffering

s Appending

e Blocking

e Terminal input

AlsyCOMP Appendix F Version 4.1 12

The general form of each attribute is a keyword followed by => and then a qualifier.
The arrow and qualifier inay sometimes be omitted. The format for an attribute specifier
is thus either of

KEYWORD

KEYWORD => QUALIFIER

AlsyCOMP Appendix F Version 4.1

